A PHOTOCHEMICAL 1,2-DEUTERIUM SHIFT. IRRADIATION OF QUINOLINE <u>N</u>-OXIDE AND QUINOLINE <u>N</u>-OXIDE-2-d₁. (1) O. Buchardt, K. B. Tomer and V. Madsen Chemical Laboratory II, University of Copenhagen, The H. C. Ørsted Institute, DK-2100 Copenhagen, Denmark. (Received in UK 23 March 1971; accepted for publication 25 March 1971) we have proposed a general mechanism for the light-induced isomerization

of heteroaromatic <u>N</u>-oxides using the quinoline <u>N</u>-oxide system as a model (3). In order to obtain further information about this mechanism we have examined the photochemistry of quinoline <u>N</u>-oxide-2-d₁ and re-examined that of quinoline <u>N</u>-oxide in several solvents. The results obtained, listed in Table 1, satisfactorily confirm the postulated mechanism (Scheme I).

Scheme I

According to our proposed mechanism (3) there are two pathways leading to carbostyrils, (<u>a</u>) <u>via</u> a <u>C,N</u> 1,2-shift, and (<u>b</u>) <u>via</u> a <u>C,C</u> 1,2-snift. The formation of carbostyril-3-d corresponds to <u>b</u>, whereas the observed lack of formation of any carbostyril-1-d does not shed any light on path <u>a</u>, since under the circumstances N-D could quite easily exchange to give N-H.

The isotope ratio observed at the 3-position of the carbostyril produced is $\frac{D}{H} = 2.11$ for water, 1.1 for 95% ethanol, 0.97 for absolute ethanol, 0.73 for benzene and 0.58 for ether (4). If it is assumed that the isotope effect for loss of hydrogen from <u>7</u> would lead to $\frac{D}{H} = 3.5$ [which is probably a maximum (5)] the $\frac{D}{H}$ ratio in water indicates that at least 85% of the carbostyril is formed via <u>b</u> in water and <u>ca</u>. 63% in ethanol and that in aprotic solvents such as benzene or ether the proportion formed <u>via <u>b</u></u> drops further to <u>ca</u>. 55% and 45% respectively. Even though the isotope ratio is expected to fall with solvent polarity (6), the $\frac{D}{H}$ ratio of less than 1 for aprotic solvents definitely indicates that the amount of carbostyril formed <u>via</u> path <u>a</u> increases as the polarity of the solvent is decreased.

The complete deuterium retention in the formyl groups of the \underline{N} -formyl-2-indolinol and \underline{N} -formylindole and the total loss of deuterium in the indole again is in excellent agreement with the proposed mechanism (7).

We have furthermore identified a new product, <u>i.e.</u>, indole-3-carboxaldehyde, from the irradiation of quinoline <u>N</u>-oxide in ethanol. If quinoline <u>N</u>-oxide-2-d₁ was employed, indole-3-carboxaldehyde-2-d₁ with complete retention and no scrambling of the deuterium was obtained. This type of product presumably results from a thermal rearrangement of the benz[d][1,3]oxazepine since it has previously been shown that isolable benz[d][1,3]oxazepines rearrange in this manner upon thermolysis (8). We propose that the observed formation of indole--3-carboxaldehyde in absolute or 95% ethanol is due to the slow addition of ethanol to the benz[d][1,3]oxazepine which permits thermolysis to occur. In aprotic solvents the small amount of water present is presumably bound quite closely to the hygroscopic quinoline <u>N</u>-oxide leading to a high concentration of water in the vicinity of the intermediate resulting in <u>N</u>-formylindolinol formation.

1	Starting M	Products												
Solvent	Quinoline <u>N</u> -oxide-d-2	Quino- line <u>N</u> -oxide	Car ril %D	bosty- -3-d Yield ^a	<u>N</u> -F Inc %D	ormyl- Iolinol Xield	N-F Ind %D	ormyl- ole Yield	Ind -3- ald %D	ole- carbox- hehyde % Yield	Ind %D	dole % Yield	Din %D	ner ¥ Yield
Ether ^C	500 mg		35	10	100	4.6	100	4.2		0	0	40.5		0
Ether ^C	lg	1 g		ь	51	10.5	51	1.5		0	0	16		O
Abs.EtOH	500 mg		49	24		0	100	1	100	4	0	1.3	51	13.9
Abs. EtOH	lg	lg		ь		0	51	1.3	51	3.2	0	6.5		ь
95% EtOH	500 mg		51	37	1	0	100	2	100	1.6	0	1.3	51	9
H_O ^d	lg		69	11	ł	0		0		0		0		0
Benzene ^C	500 mg		42	10	100	17	100	16		0	0	5		0

Table 1. Irradiation of Quinoline and Quinoline N-Oxide-2-d1.

a. Average or best ±3. Determined by isolation from silicagel TLC.

^b. Not measured.

C. Small amount of water present.

d. The aqueous solution was extracted with ${
m CHCl}_3$ and the products separated by TLC.

REFERENCES

- 1. Photochemical Studies XIX. For previous paper see ref. 2.
- 2. O. Buchardt, C. L. Pedersen, N. Harrit and B. Jensen, Manuscript in preparation.
- 3. G. G. Spence, E. C. Taylor and O. Buchardt, Chem. Revs., 70, 231 (1970).
- 4. These ratios are the average of at least three determinations.
- 5. see e.g. R. P. Bell and J. E. Crooks, Proc. Roy. Soc., A, 286 285 (1965).
- 6. D. J. Barnes and R. P. Bell, <u>Proc. Roy. Soc.</u>, <u>A</u>, <u>318</u>, 421 (1970). As the difference in pK_a of the substrate and the conjugate acid of a base increases the isotope effect in proton transfer to the base (in this case solvent) decreases.
- 7. The position of the deuterium was determined by $^{1}\mathrm{H}$ NMR.
- 8. O. Buchardt, P. L. Kumler and C. Lohse, Acta Chem. Scand. 23, 2149 (1969).

4